
 1

Object Pointing: A Complement to Bitmap Pointing in GUIs

Summary
Svetlana Slavova

sds797@mail.usask.ca

ABSTRACT
This work is a summary of the paper, presented in [1].

INTRODUCTION
Pointing is a ubiquitous technique that is used in the user
interfaces to select targets. The Fitts’ law specifies that the
selection time can be improved if the distance to the target
is decreased and/or if the width of the target is increased.
Different approaches, based on the Fitts’ law, such as drag-
and-pop and semantic pointing, are proposed by
researchers, in order to facilitate target acquisition,
assuming that the “screen cursor is a tool for pixel
selection”. This pointing technique is called bitmap
pointing.

PROBLEM DEFINITION
The bitmap (BMP) pointing corresponds to the real-world
object acquisition – it requires the user to complete the
selection movement, even in the cases, in which the
destination item is obvious and unambiguous. As a result,
the BMP pointing sends more information to the device,
than actually is needed, and the unnecessary data is simply
ignored.

The main question is: How to make the pointing easier than
in the real-world? This would decrease the selection time
and would increase performance, respectively. As a result,
the amount of unnecessary information, sent to the system,
during movement from one object to another, would be
reduced.

APPROACH
The authors of [1] suggest that the user interface can be
augmented with an additional cursor, called Tim. Within an
object, the Tim cursor moves in parallel with the input
device, for example the mouse. However, when the Tim
cursor reaches the boundary of the current item, it simply
jumps to the closest one, which is located in the same
direction as the direction of the movement of the mouse. In
order to achieve a correct jump action, not only the position
of Tim cursor is taken into account, but also its current
velocity and acceleration. Moreover, if there is no object in
the direction, the additional cursor does not leave the
object.

This approach, called object pointing (OP), allows none of
the cursors to be displayed to the user, since an object is
highlighted all the time, and by moving the mouse, the user
is able to change the selected item. Furthermore, the
distance to the target is reduced, which suggests that the
selection time will decrease.

EVALUATION

Experiment setup
Two types of experiments are conducted – in 1D space and
in 2D space. The former consists of three models – BMP
pointing, OP with visible Tim cursor, and OP without Tim
cursor displayed. The latter contains two models – BMP
pointing and OP without Tim. The observed variables are
the movement time between two object selections, the
amplitude of the mouse (physical area and screen area), and
the pointing difficulty.

Results
As expected, the OP technique reduces the amount of sent
information to the system. The results confirm that object
pointing is faster than the BMP technique. The advantage of
this approach increases even more, when the pointing
becomes more complex, due to high density of the objects
or high level of index of difficulty. In addition, the footprint
of the input device is reduced, which is beneficial, in case
of a restricted movement area of the input device.

CONCLUSIONS
The paper, presented in [1], proposes a promising
interaction technique – object pointing, which facilitates
item selection. This new approach makes the target
acquisition easier and faster than the BMP mode, since an
object is selected all the time, and the focus jumps from the
current item to the next one, depending on the movement
direction of the input device, as well as on its velocity and
acceleration.

REFERENCES
1. Guiard, Y., Blanch, R., Lafon, M. Object Pointing: A

Complement to Bitmap Pointing in GUIs. Proceedings
of Graphics Interface 2004, London, Ontario, May 17-
19, 2004, 9-16.

PDF created with pdfFactory trial version www.pdffactory.com

mailto:sds797@mail.usask.ca
http://www.pdffactory.com
http://www.pdffactory.com

 1

Object Pointing

Implementation Description
Svetlana Slavova

sds797@mail.usask.ca

ABSTRACT
This paper is a description of my implementation of the
object pointing technique, presented in [1].

DESCRIPTION
The program represents an implementation of object
pointing, which introduces additional cursor in the user
interface, called Tim. The environment consists of two 2D
objects, represented as dark-blue boxes. When one of the
objects is selected, its color changes to red. Target selection
is realized by the Tim cursor. When the Tim cursor is
within an object, it follows the movement of the mouse.
However, when the Tim cursor reaches the boundary of the
object, it jumps to another object, which is located in the
same direction, as the direction of the mouse movement. If
there is no item in that direction, the Tim cursor does not
leave the current object. The Tim cursor is visualized as a
white dot and a green concentric circle around it, which
helps the user to locate the cursor.

IMPLEMENTATION DETAILS
The program is implemented in Java, using Java Swing.
Two classes are developed, as follows:

• ObjectPointing. This is the starting point of the
application. The class is responsible for the creation of
the program’s frame. It adds to the frame the mouse
surface, which is represented by an object of class
MousePanel, described below.

• MousePanel. This class represents the mouse surface.
It handles the mouse events, reacts, according to the
performed actions, and updates the user interface. The
main components of the class are the following:

o Method drawObjects – it displays the background
of the user interface, as well as two objects, which
are potential targets;

o Method highlightObject1 – it displays the left
object of the user interface in red;

o Method highlightObject2 – it displays the right
object of the user interface in red;

o Method drawTimCursor – it displays the Tim
cursor on particular coordinates as a white dot and
a concentric circle in green;

o Class MyMouseMotionAdapter – it handles the
movements of the mouse. Every time when the
mouse is moved, method mouseMoved of the class
is called. It updates the mouse coordinates and
invokes method paintComponent, which repaints
the user interface;

o Method paintComponent – it contains the main
logic of the program. It calculates where to display
the Tim cursor, analyzes the object to be
highlighted, as well as invokes the methods that
draw the objects. The paintComponent method is
called when the user interface has to be repainted.
The previous and the current coordinates of the
mouse are taken into account, in order to calculate
the direction of the mouse movement and the
movement length. The algorithm of the method is
presented on the diagram below.

Figure 1. Algorithm of method paintComponent

HOW TO COMPILE & RUN
• In order to compile the program, type the following

command in the terminal window:

PDF created with pdfFactory trial version www.pdffactory.com

mailto:sds797@mail.usask.ca
http://www.pdffactory.com
http://www.pdffactory.com

 2

javac ObjectPointing.java

• In order to run the program, type:

java ObjectPointing

or

Double-click on jar file

ObjectPointing2D

USER INTERFACE
When the application is started, a window, shown on figure
2, is displayed. Once the mouse is located in the window of
the program, one of the objects is highlighted, as shown on
figure 3. When the Tim cursor is located within an object, it
follows the movement of the mouse. However, when the
Tim cursor leaves the boundary of the object, it highlights
the item that is located in the same direction, as the
direction of the mouse movement (figures 4 and 5). Figure
6 shows that if there is no object in the direction of the
mouse movement (in this case object on the right side of the
red object), the Tim cursor does not leave the current item.

Figure 2. Initial window of the application

Figure 3. Tim cursor is within an object

Figure 4. The Tim cursor reaches the boundary of the object

Figure 5. The Tim cursor highlights the object that is in the
same direction, as the mouse movement

Figure 6. The Tim cursor does not leave the object, if no object
is located in the direction of the mouse movement

REFERENCES
1. Guiard, Y., Blanch, R., Lafon, M. Object Pointing: A

Complement to Bitmap Pointing in GUIs. Proceedings
of Graphics Interface 2004, London, Ontario, May 17-
19.

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

