
Assignment 1
Due: 24.02.06 – 17:59:59

Part 1) Reflection and serialization
Your task is to write an application that will allow a user to create/destroy/manipulate
instances of classes that are unknown at compile time. Your program should offer an
interface (GUI) that will enable a user to perform the following operations:

 Create new instance

The user should be able to create an instance of a class by specifying the name of
the class and the location where the application can find the class file. In case of
an unsuccessful creation the users should be informed by displaying an error
message. In case of successful creation the user should be informed by displaying
a “successful creation” message AND a logical name (unique string) that has been
assigned to the new instance. Assume that every class has one no argument
constructor.

Destroy existing instance
The user should be able to destroy a created instance by using a logical name of
an instance. In case of successful destruction the user should be informed with a
“successful removal” message – in case of failure an error message should be
displayed.

Display instance
The user should be able to review a created instance. The system should display
the fields (name, type and content) and methods of the instance.

Set Fields
The user should be able to manipulate the fields of the instance that are of a
primitive data type (built-in types e.g. int, boolean etc.)

Invoke method
The user should be able to invoke a method of an existing instance. To simplify
this task assume that only methods with return type string and one string
argument are invoked.

Save Instance
Allow the user to save an instance to file. The user should be allowed to select the
filename.

Load Instance
Allow the user to load an instance if she/he names the file and provides the
system with the name of the class and the location of the class-file.

Part 2) Sockets & Server
Transform the application of part 1 into a client server application that will allow up to 30
users to remotely perform the operations mentioned in part 1. To do so you will have to
develop a communication protocol and its implementation. The clients will be thin clients
that will connect to the server. The users will be able to activate to perform the above-
mentioned 7 operations (create, destroy, display, set, invoke, load, save) by using the
GUI of the client. Rather than executing the commands the client will send the
commands via a (TCP/IP) socket-connection to the server, which will perform them. This
means that all 7 operations will be executed only in the server. The server will send the
results of the operations to the client. The client will be used only as a remote GUI for
accessing the server.
To keep the program flexible you can expect that the user will inform the client of the IP
and Port of the server.

Part 3) Using multiple Servers
It is often advisable to enable the distribution of client load by using more than one
server. This means that you have to modify your server and client code from part 2 to
handle more than one server.
When starting a server it should be informed if there are already other servers running. In
case that there are other servers it should contact them and inform them about its
presence. The new server should try to offload the existing servers. New client
connections to any server should be redirected to the server with the lowest number of
connections.
Please note that new clients could try to access an object created on an “older” server.

Part 4) Handling Server shutdown/reboots
To add more flexibility to the multiple server scenario ensure that a server can be shut-
down. If a shutdown is initiated, the data of the server should be moved to another
machine. In addition to not allowing new connections, current clients should be
redirected to another machine.

Handin (via E-Handin):
Documented source code
All Binaries
Batch files to compile and run the different parts of the assignment
A detailed description of how you tested your code

Marking: Functionality = 80 %, Test Report = 10 %, Documented Source Code = 10 %

