
Clients Load Generator and Simulator
Svetlana Slavova

Department of Computer Science
University of Saskatchewan

Saskatoon, Canada

sds797@mail.usask.ca

ABSTRACT
A tool, Clients Load Generator and Simulator, is presented in
this paper as a way for creating consumers’ load and for
simulating the consumers’ behavior. The application generates
requests in XML format and sends them to the desired
endpoints. The target components are Web Services, accessible
via their service descriptions. The tool is designed in a way to
represent real clients’ behavior – the calls within a client are
synchronized, whereas between multiple clients the requests are
executed in parallel. The time between the service calls is
controlled by a time constant that is set for each request. In
addition, the tool keeps logs of all results obtained during the
simulation period. The application and the target services are
tested in a single machine as well as in a distributed
environment using RPC communication style (Apache Axis
Framework, version 1.x) and Document communication style
(Apache Axis Framework, version 2.0). The obtained results
confirm that the proposed application can be used in
experiments requiring invocation of Web Services. Furthermore,
they show some differences in the response times of the services
when using Axis 1 and Axis 2.

1. INTRODUCTION
The Clients Load Generator and Simulator for Web Services is a
Java application for creating and executing clients’ behavior.
The workload is designed in XML format which allows the
generation of the XML files to be done automatically by the
program or manually by the user. Each request consists of the
following information: Unique identifier (client id & request id);
URL – endpoint to the desired Web Service; Method name –
name of the method of the Web Service that has to be invoked;
Arguments – arguments of the method; only String data types
are taken into account; Time – time in milliseconds showing the
relative time for sending the request after getting the response of
the previous call.

The tool has three main functions (Figure 1):

• To generate load for one client. The calls represent
the behavior of one client (1 Client Multiple
Web Services). The user fills in the fields (URL,
method name, arguments, and time) for each call and
gets as a result an XML file containing the full
behavior of the client. The application checks if all
required fields are filled in. If not, an user error will
occur;

• To generate load for multiple clients. The calls
represent the behavior of multiple clients (Multiple

Clients Multiple Web Services). The user fills in
the names of the XML files that should be loaded. The
application randomizes the single client’s load and
creates an XML file containing behavior for multiple
clients;

• To simulate the clients’ behavior. The application
loads the XML file that contains multiple clients’
load, parses the file in order to get the necessary
information (client ids, request ids, URLs, method
names, arguments, and times), and starts the execution
of each client. The client is started in a separate
thread. The threads invoke the Web Services, get the
results, and write them into a text file (log-file).

The application is able to request Web Services on
both frameworks – Axis 1.x and Axis 2. When starting
the simulation, the user can specify the
communication style – RPC or Document.

Figure 1. Clients Load Generator and Simulator for Web

Services

The Clients Load Generator and Simulator deals with two types
of requests:

• Requests within a client requiring synchronization.
The behavior of the client consists of one or more
steps (requests). When the result of the first request is
obtained, the second call is sent to the next Web
Service. Depending on the scheduled time for

execution, the request might wait for some
milliseconds. Each client is executed in a different
thread. Each thread starts timers for execution of the
Web Services;

• Parallel requests of different clients. Since each client
runs in a separate thread, the behavior of the different
consumers is independent from one to another, which
allows clients to send calls simultaneously to the same
Web Services.

The remainder of the paper is structured as follows: Section 2
provides a problem definition; Section 3 describes the
implementation of the tool – data structures, clients’ requests
representation, hierarchy of the implemented classes, and user
interface; The section ends with some directions about how to
compile and to run the application; Section 4 discusses the
experiment setups and the results are presented in section 5;
Finally, section 6 shows some conclusions and future work.

2. PROBLEM DEFINITION
The goal of the Clients Load Generator and Simulator Tool is to
be helpful during Web Services experiments that require service
invocations. The main questions of the paper are the following:

• How to make the tool similar to the real-world
clients’ behavior?

• Which is the minimum required information that
should be obtained from the user during the
generation of the clients’ load as well as during the
simulation period?

3. IMPLEMENTATION
The following programming mechanisms, languages, and
techniques are used during the development of the application:
File I/O, Threads, XML file creation, XML file parsing, Web
Services, Axis 1, Axis2, Java, and Java Swing.

3.1. Data Structures
The clients’ load is represented in XML format which makes it
language- and platform-independent. The root element of the
multiple clients’ behavior, called multiple_load, wraps the
whole XML document. Each client has a unique identifier as
element of tag client_id. The requests of each consumer are
unique as well and are defined as elements of tag request_id.
They have a prefix number_ and suffix – the number of the
request. The parameters of each call can be found within tag
request. They are: URL of a Web Service, method name,
arguments of the method, time showing in how many
milliseconds after getting the result of the previous request, the
current request should be executed. Since the arguments of the
methods could be multiple, they are wrapped in tag arguments.
An example of generated multiple clients’ load can be seen on
Figure 2.

Figure 2. Generated multiple clients’ load

3.2. Clients’ Requests Representation
In order to represent the requests of the clients, hash tables are
used as data types. There are three hash tables that correspond to
the structure of the data – Clients, Requests, and
RequestParams. Table Clients consists of all clients’ ids that
participate in the generated XML file. There is one table
Requests that corresponds to each client id. The keys of table
Requests are the ids of the requests of the client. The values of
the table are RequestParams hash tables. Each RequestParams
table has four keys – url, method, arguments, and time. The
structure of the clients’ requests representation can be followed
on Figure 3.

3.3. Hierarchy of the Implemented Classes
The implementation of the Clients Load Generator & Simulator
is developed in Java. The application is structured in two
packages: GUI and Actions. The GUI package contains two
classes UserInterface.java and SubFrames.java that are
responsible to provide all necessary methods for the interface
and the interaction with the users. The Actions package provides
classes that manage hash tables (ManageHashtables.java), parse
XML files (ParseXMlFile.java), generate clients’ load
(GenerateLoad.java), and simulate clients’ behavior
(SimulateClient.java). The hierarchy of the classes is shown on
Figure 4.

Figure 3. Clients’ Requests Representation

Figure 4. Hierarchy of the implemented classes

3.4. User Interface
The user-friendly interface of the Clients Load Generator &
Simulator is developed by using the Java Swing Library. The
windows’ depth is two which allows the user to navigate easily.
The main screen of the application suggests a choice of four
options – to create a single client’s behavior; to create a
multiple clients’ behavior; to simulate clients’ behavior; and to
exit the tool. Figure 5 shows the main window of the tool and
Figure 6 represents the interface that creates a single client’s
behavior.

Figure 5. Main window of the Clients Load Generator and

Simulator

Figure 6. Window that creates a single client’s behavior

The application checks if the user has entered the required
values and if not, an appropriate message is displayed. After

each action, the user is able to see the result of the operation –
whether it is successful or not.
The user is able to select RPC style or Document style of
communication (Figure 7) when starting the simulation of the
clients’ behavior.

Figure 7. Window that starts the simulation of the clients

3.5. How to compile and how to run
• In order to compile the application, go to folder

Project/LoadGenerator/build/classes/ and run batch
file compile;

• In order to execute the application, go to folder
Project/LoadGenerator/build/classes/ and run batch
file run;

• The XML files are generated in folder
Project/LoadGenerator/build/classes/Load/. The
names of the created single client load files are
SingleClientLoad<client ID>.xml. The name of the
generated multiple clients’ load file is
MultipleClientLoad.xml;

• The obtained results of the multiple clients’ load
simulation can be found in folder
Project/LoadGenerator/build/classes/Results/ where
each client has its own file with results. The name of
the text file is Results<client ID>.txt.

4. EXPERIMENT
4.1. Assumptions
Two assumptions are made about the Web Services to be
invoked by the Clients Load Generator and Simulator:

• To take as arguments String data types;

• The result of the invocation to be of String data type.

These requirements narrow the possible data types and at the
same time allow the behavior of the services to be as real Web
Services.

4.2. Experiment Setups
Eight experiment setups have been designed for each framework
– RPC and Document, in order to test the Clients Load
Generator & Simulator:

Type 1: Clients & Web Services are located in one machine:

• Scenario 1: 1 client – 1 request
• Scenario 2: 1 client – Many requests
• Scenario 3: Many clients – 1 request
• Scenario 4: Many clients – Many requests

Type 2: Clients & Web Services are distributed in different
machines:

• Scenario 5: 1 client – 1 request
• Scenario 6: 1 client – Many requests
• Scenario 7: Many clients – 1 request
• Scenario 8: Many clients – Many requests

These experiments represent the full number of situations that
could happen when the Clients Load Generator and Simulator is
used. The evaluation of the tool gives an overview of the
behavior of the Web Services in the different cases. The real-
world situation is scenario 8 that represents many clients calling
many distributed Web Services. However, it is interesting to
observe the other cases as well since differences in the behavior
of the services might occur.
The RPC style and the Document style are tested with exactly
the same Web Services, client load, and load distribution. For
RPC, the used framework is Apache Axis 1, and for Document
style, the framework is Apache Axis 2.

5. RESULTS
The results of the client load simulation are saved automatically
in text files. There is a separate result file for each client. The
file contains the following values: client ID, request ID,
Execution time, Start execution time, End execution time,
Result of the execution, URL of the Web Service, Method
name. If the Web Service is not reachable, the execution time is
set to -1 and the result is set to null. An example of a result file
if shown on Figure 8.
The results of the conducted 16 experiments confirm that the
Clients Load Generator & Simulator could be used for creating
clients’ behavior in XML format and for invoking Web
Services. For Axis 1, when the clients and the services are
located in the same machine, the response time is higher than
the response time of the services when they are distributed. The
reason for this is the increased overhead since the same machine
has to send the clients’ calls & to handle the requests. However,
when the framework is Axis 2, there are no significant
differences in the response times obtained with distributed and
not distributed load. Consequently, the framework deploying the
services is crucial as well.
The most important scenario is many distributed clients – many
requests. It represents a real-case clients’ behavior. However,
the execution time varies significantly – from 15 milliseconds to
10-13 seconds for both styles (RPC and Document). The reason
for this result could be the creation of the sockets, the garbage
collection, and even the configuration of the Tomcat and the
axis settings. A comparison between the obtained results is
made in table 1 and table 2 as well as in Figures 9, 10, and 11.

Figure 8. Example: Results of simulation

0

200

400

600

800

1000

1200

1400

1600

1800

1C-1R 1C-10R 10C-1R 5C-5R

Average response time (ms) obtained with
different client load and different load

distribution

One machine (3) Different machines

Figure 9. Average response time obtained during each
experiment (Axis 1)

0

200

400

600

800

1000

1200

1400

1600

1800

1C-1R 1C-10R 10C-1R 5C-5R

Average response time (ms) obtained with
different client load and different load

distribution

One machine (3) Different machines

Figure 10. Average response time obtained during each
experiment (Axis 2)

Table 1. Experiment results (Axis 1)

Table 2. Experiment results (Axis 2)

0

200

400

600

800

1000

1200

1400

1600

1800

1C-1R 1C-10R 10C-1R 5C-5R

Average response time (ms) obtained with
different client load distributed in 3

machines

RPC Style Document Style

Figure 11. Comparison: RPC Style Document Style

6. CONCLUSIONS AND FUTURE WORK
The presented Clients Load Generator and Simulator can be
used as a tool during Web Services experiments. It operates as
both XML clients’ load creator and simulator. The application
represents real-world clients’ behavior since it considers the
requests of one client as consecutive steps and the requests
between different clients are simultaneous. The time between
each call is controlled by a time tag within the XML clients’
load representation. The Web Services are accessed through
their WSDL description during the simulation period.
The tool is able to work on RPC and Document framework. The
obtained results confirm that the proposed application can be
used in experiments requiring invocation of Web Services. In
addition, they represent some differences in the response times
of the services when using Axis 1 and Axis 2.
Currently, the services that are invoked during the experiment
period are developed in Java, based on Axis 1 (RPC style).
Services, written in different languages such as C# and PHP
could be added as well. In addition, the functionality of the tool
might be extended to handle Web Services that follow the Axis
2 (Document) standard.

Experiment
Type

Scenario Min
response
time, ms

Average
response
time, ms

Max
response
time, ms

Number of
repetitions

1 client –
1 request

875 1104.7 3250 20

1 client –
10 requests

875 999.6 1203 20

10 clients –
1 request

844 993 1157 20
One

machine

5 clients –
5 requests

969 1782.3 4094 10

1 client –
1 request

15 25 125 20

1 client –
10 requests

0 21.1 94 20

10 clients –
1 request

0 19.8 110 20

(3)
Different
machines

5 clients –
5 requests

16 658.3 8875 10

Experiment
Type

Scenario Min
response
time, ms

Average
response
time, ms

Max
response
time, ms

Number of
repetitions

1 client –
1 request

15 28.9 32 20

1 client –
10 requests

15 48.11 266 20

10 clients –
1 request

15 34.38 188 20
One

machine

5 clients –
5 requests

15 1348.65 6640 10

1 client –
1 request

15 24 32 20

1 client –
10 requests

15 61.98 1125 20

10 clients –
1 request

15 26.76 250 20

(3)
Different
machines

5 clients –
5 requests

15 1603.36 12968 10

	1. INTRODUCTION
	2. PROBLEM DEFINITION
	3. IMPLEMENTATION
	3.1. Data Structures
	3.2. Clients’ Requests Representation
	3.3. Hierarchy of the Implemented Classes
	3.4. User Interface
	3.5. How to compile and how to run

	4. EXPERIMENT
	4.1. Assumptions
	4.2. Experiment Setups

	5. RESULTS
	6. CONCLUSIONS AND FUTURE WORK

