

Dependability in distributed applications

Scientific Talk

by Svetlana Slavova

Outline

■ The threats (Errors, Faults, Bugs [Bunny ©])

- Dependability
- Availability
- Reliability
- Fault-tolerance
- Example

The threats in the distributed applications

- Failure incorrect result; occurs when the system does not provide a correct service
- Error a human action that produces an incorrect result (ex.: syntax error, logical error)
- Fault an incorrect step or data in a system; Everything looks correct but we cannot get a result
- Bug informal word; deviation from the expected result

Dependability

Dependability includes:

- Availability readiness for correct service;
- Reliability continuity of correct service;
- Safety absence of catastrophic consequences on the user(s) and the environment;
- <u>Security</u> confidentiality (absence of unauthorized disclosure of information) & Integrity (absence of improper system state alterations).

Availability

- Availability is the proportion of time a system is in a functioning condition
- Availability is the ratio of the total time a unit is capable of being used during interval to the length of the interval
- Example: Availability of 100/168 if the unit is capable of being used for 100 hours in a week

Reliability

- Definition: "The probability that a system will perform its intended function during a specified period of time under stated conditions."
- Reliability parameter: mean-timebetween-failure (MTBF) – failure rate (number of failures during a given period)

How to achieve availability & reliability

- Fault-prevention guarantees that the system does not have faulty components
- Fault-tolerance assumes that although a faultprevention has been done, there could be faulty components in the system
- Fault-removal removes faults of the system by using verification (static & dynamic verification)
- <u>Fault-forecasting</u> estimates the current and the future number of faults in the system, and their consequences for the system

Fault-tolerance (I)

- Fault-tolerance deals with the question: "How to deliver a correct service in the presence of faults?"
- Fault-tolerant system continues working properly in a case of failure in one or more of its components

Fault-tolerance (II)

Achieving fault-tolerance through <u>recovery</u>:

- Roll-forward
- Roll-back

Achieving fault-tolerance through <u>duplication</u>:

- Replication
- Redundancy
- Diversity

Important issues

Synchronization of the replicas in order to have the same internal state
How to synchronize
When to synchronize (Read/Write request)
System complexity
System overhead (more communication => more traffic, higher execution time)

Distributed System Example

References

Fundamental Concepts of Dependability,
A. Avizienis, J. Laprie, B. Randell

Building reliable secure computing systems out of unreliable insecure components, J. Dobson, B. Randell

http://en.wikipedia.org/wiki/Ilities

Thank you for your attention!

CMPT 842, March 2006