
CMPT 418 Assignment 1 (due by October 22, 6 pm)
(to be accomplished in teams of two people)

Agent Planning

Imagine a coloured block-world consisting of black and white blocks that can be moved
by a robotic arm. The blocks can be stacked, unstacked, picked-up and put down, just like
in the classical Blocks World. In addition, they can be assimilated, an operation which
changes the colour of the lower block to the colour of the upper block when two blocks
are stacked upon each other (the upper block “assimilates” the lower block). To simplify
the task, assume that assimilation happens only if the upper block is black.

Your task is using the STRIPS planning algorithm (in the notes) to write an automatic
player in the “Assimilation game” played in the Blocks World. Your player should, given
a description of any initial state of the world and a goal state (expressed as a set of
predicates), generate a plan to achieve the goal state starting from the initial state. The
plan will contain a list of actions. The goal states can be such that there are no white
blocks and the blocks are in particular configuration.

The list of predicates describing states in the Blocks World is: (as in textbook, pg. 73):

Predicate Meaning
On (x, y)
OnTable (x)
Clear (x)
Holding (x)
ArmEmpty
Black (x)
White (x)

Object x on top of object y
Object x is on the table
Nothing is on top of object x
Robot Arm is holding x
Robot Arm is empty
Object x is black
Object x is white

The list of possible actions is:

assimilate (x, y)
 Pre {Black(x), White(y), On (x,y)}
 Del {White (y)}
 Add {Black (y)}

stack (x, y)
 Pre {Clear (y), Holding (x)}
 Del {Clear(y), Holding (x)}
 Add {ArmEmpty, On(x,y)}

For example, to bring the initial state into the goal state shown below:

One possible plan will be: unstack(C,D), putdown(C), unstack(A,B), stack(A,E),
assimilate (A,E), pickup(B), stack(B,D), assimilate(B,D), unstack (B,D), stack(B,C),
assimilate (B,C), unstack(A,E), putdown(A), unstack(B,C), putdown(B).

pickup (x)
 Pre {Clear (x), OnTable(x), ArmEmpty}
 Del {OnTable(x), ArmEmpty}
 Add {Holding (x)}

unstack (x, y)
 Pre { On(x,y), Clear (x), ArmEmpty }
 Del { On(x,y), ArmEmpty}
 Add { Clear (y), Holding (x)}

putdown (x)
 Pre { Holding (x) }
 Del {Holding (x) }
 Add {OnTable(x), ArmEmpty}

B

A

B C D E A

C

D E

On (A, B), On (C, D), OnTable (E),
Clear (A), Clear (C), Clear (E),
OnTable (B), OnTable (D), OnTable (E),
Black (A), Black (B),
White (C), White (D), White (E),
ArmEmpty.

OnTable (A), OnTable (B), OnTable (C),
OnTable (D), OnTable (E),
Clear (A), Clear (B), Clear (C), Clear (D),
Clear (E),
Black(A), Black(B), Black(C), Black(D),
Black (E),
ArmEmpty.

Note: The actual ordering of the blocks laying on the table is unimportant!

The Program:
You can use Java, C++ or C# to program the algorithm.
The program should have a graphical user interface (GUI) to allow for easy testing. The
interface should give three options for the user:
- describe the initial state and the goal state either by using text description (with
predicates) or by using graphical representation (by creating blocks of certain colours in
certain positions on the screen);
- allow the user to start the planning algorithm which will output the plan in text format;
display the plan.
- execute the plan, by displaying the effects of the actions step by step in the graphical
representation starting with the initial state until the goal state is reached (the ordering of
blocks on the table doesn’t matter).

Here is an example of the interface of a similar, planning applet developed at the UBC
(without assimilation):

Marking

Total: 20 marks
For full marks your program has to work reliably with more than 5 blocks (e.g. with 6),
have a GUI and do colour assimilation. Below is a table that shows how many marks you
will get, if some of the requirements are not met.

Points Planning
works
always
with ? blocks

GUI &
Assimilation

No GUI, has
Assimilation

GUI, but No
Assimilation

No GUI & No
Assimilation

> 5 19 or 20 17 or 18 15 or 16 13 or 14
5 17 or 18 15 or 16 13 or 14 11 or 12
4 15 or 16 13 or 14 11 or 12 9 or 10
3 13 or 14 11 or 12 9 or 10 8
2 11 or 12 9 or10 8 6

< 2 10 8 6 4

